10 research outputs found

    Novel Design of a Magnetically Switchable MOSFET using Magnetoresistive Elements

    Get PDF
    Various research activities have been carried out, individually, in the fields of MOSFET design andanalysis, and magnetoresistance; however, ourresearch focused on the design and analysis of a magnetically switchable MOSFET with the application of magnetoresistive elements. Theoretical study, calculations and simulations were used in order to design and analyze the magnetically switchable MOSFET. It was observed that the magnetoresistance values of 42%, 81% and 95%, respectively, for giant magnetoresistive element, tunneling magnetoresistive element and colossal magnetoresistive element resulted in reduced resistance values of 139.2Ω, 45.6Ω and 12Ω across the MOSFET in presence of magnetic field; as compared to a higher value of 240Ω in its absence. As a consequence, the gate-source voltage increased beyond the threshold value (1.5V), and the MOSFET switched ON. Accordingly, a magnetically switchable MOSFET was designed and its behavioural characteristics were analyzed

    Autonomous Racing using a Hybrid Imitation-Reinforcement Learning Architecture

    Full text link
    In this work, we present a rigorous end-to-end control strategy for autonomous vehicles aimed at minimizing lap times in a time attack racing event. We also introduce AutoRACE Simulator developed as a part of this research project, which was employed to simulate accurate vehicular and environmental dynamics along with realistic audio-visual effects. We adopted a hybrid imitation-reinforcement learning architecture and crafted a novel reward function to train a deep neural network policy to drive (using imitation learning) and race (using reinforcement learning) a car autonomously in less than 20 hours. Deployment results were reported as a direct comparison of 10 autonomous laps against 100 manual laps by 10 different human players. The autonomous agent not only exhibited superior performance by gaining 0.96 seconds over the best manual lap, but it also dominated the human players by 1.46 seconds with regard to the mean lap time. This dominance could be justified in terms of better trajectory optimization and lower reaction time of the autonomous agent

    Control Strategies for Autonomous Vehicles

    Full text link
    This chapter focuses on the self-driving technology from a control perspective and investigates the control strategies used in autonomous vehicles and advanced driver-assistance systems from both theoretical and practical viewpoints. First, we introduce the self-driving technology as a whole, including perception, planning and control techniques required for accomplishing the challenging task of autonomous driving. We then dwell upon each of these operations to explain their role in the autonomous system architecture, with a prime focus on control strategies. The core portion of this chapter commences with detailed mathematical modeling of autonomous vehicles followed by a comprehensive discussion on control strategies. The chapter covers longitudinal as well as lateral control strategies for autonomous vehicles with coupled and de-coupled control schemes. We as well discuss some of the machine learning techniques applied to autonomous vehicle control task. Finally, we briefly summarize some of the research works that our team has carried out at the Autonomous Systems Lab and conclude the chapter with a few thoughtful remarks

    Towards Sim2Real Transfer of Autonomy Algorithms using AutoDRIVE Ecosystem

    Full text link
    The engineering community currently encounters significant challenges in the development of intelligent transportation algorithms that can be transferred from simulation to reality with minimal effort. This can be achieved by robustifying the algorithms using domain adaptation methods and/or by adopting cutting-edge tools that help support this objective seamlessly. This work presents AutoDRIVE, an openly accessible digital twin ecosystem designed to facilitate synergistic development, simulation and deployment of cyber-physical solutions pertaining to autonomous driving technology; and focuses on bridging the autonomy-oriented simulation-to-reality (sim2real) gap using the proposed ecosystem. In this paper, we extensively explore the modeling and simulation aspects of the ecosystem and substantiate its efficacy by demonstrating the successful transition of two candidate autonomy algorithms from simulation to reality to help support our claims: (i) autonomous parking using probabilistic robotics approach; (ii) behavioral cloning using deep imitation learning. The outcomes of these case studies further strengthen the credibility of AutoDRIVE as an invaluable tool for advancing the state-of-the-art in autonomous driving technology.Comment: Accepted at AACC/IFAC Modeling, Estimation and Control Conference (MECC) 202

    Proximally Optimal Predictive Control Algorithm for Path Tracking of Self-Driving Cars

    Full text link
    This work presents proximally optimal predictive control algorithm, which is essentially a model-based lateral controller for steered autonomous vehicles that selects an optimal steering command within the neighborhood of previous steering angle based on the predicted vehicle location. The proposed algorithm was formulated with an aim of overcoming the limitations associated with the existing control laws for autonomous steering - namely PID, Pure-Pursuit and Stanley controllers. Particularly, our approach was aimed at bridging the gap between tracking efficiency and computational cost, thereby ensuring effective path tracking in real-time. The effectiveness of our approach was investigated through a series of dynamic simulation experiments pertaining to autonomous path tracking, employing an adaptive control law for longitudinal motion control of the vehicle. We measured the latency of the proposed algorithm in order to comment on its real-time factor and validated our approach by comparing it against the established control laws in terms of both crosstrack and heading errors recorded throughout the respective path tracking simulations

    AutoDRIVE Simulator: A Simulator for Scaled Autonomous Vehicle Research and Education

    Full text link
    AutoDRIVE is envisioned to be an integrated research and education platform for scaled autonomous vehicles and related applications. This work is a stepping-stone towards achieving the greater goal of realizing such a platform. Particularly, this work introduces the AutoDRIVE Simulator, a high-fidelity simulator for scaled autonomous vehicles. The proposed simulation ecosystem is developed atop the Unity game engine, and exploits its features in order to simulate realistic system dynamics and render photorealistic graphics. It comprises of a scaled vehicle model equipped with a comprehensive sensor suite for redundant perception, a set of actuators for constrained motion control and a fully functional lighting system for illumination and signaling. It also provides a modular environment development kit, which comprises of various environment modules that aid in reconfigurable construction of the scene. Additionally, the simulator features a communication bridge in order to extend an interface to the autonomous driving software stack developed independently by the users. This work describes some of the prominent components of this simulation system along with some key features that it has to offer in order to accelerate education and research aimed at autonomous driving

    AutoDRIVE: A Comprehensive, Flexible and Integrated Cyber-Physical Ecosystem for Enhancing Autonomous Driving Research and Education

    Full text link
    Prototyping and validating hardware-software components, sub-systems and systems within the intelligent transportation system-of-systems framework requires a modular yet flexible and open-access ecosystem. This work presents our attempt towards developing such a comprehensive research and education ecosystem, called AutoDRIVE, for synergistically prototyping, simulating and deploying cyber-physical solutions pertaining to autonomous driving as well as smart city management. AutoDRIVE features both software as well as hardware-in-the-loop testing interfaces with openly accessible scaled vehicle and infrastructure components. The ecosystem is compatible with a variety of development frameworks, and supports both single and multi-agent paradigms through local as well as distributed computing. Most critically, AutoDRIVE is intended to be modularly expandable to explore emergent technologies, and this work highlights various complementary features and capabilities of the proposed ecosystem by demonstrating four such deployment use-cases: (i) autonomous parking using probabilistic robotics approach for mapping, localization, path planning and control; (ii) behavioral cloning using computer vision and deep imitation learning; (iii) intersection traversal using vehicle-to-vehicle communication and deep reinforcement learning; and (iv) smart city management using vehicle-to-infrastructure communication and internet-of-things

    Towards Mechatronics Approach of System Design, Verification and Validation for Autonomous Vehicles

    Full text link
    Modern-day autonomous vehicles are increasingly becoming complex multidisciplinary systems composed of mechanical, electrical, electronic, computing and information sub-systems. Furthermore, the individual constituent technologies employed for developing autonomous vehicles have started maturing up to a point, where it seems beneficial to start looking at the synergistic integration of these components into sub-systems, systems, and potentially, system-of-systems. Hence, this work applies the principles of mechatronics approach of system design, verification and validation for the development of autonomous vehicles. Particularly, we discuss leveraging multidisciplinary co-design practices along with virtual, hybrid and physical prototyping and testing within a concurrent engineering framework to develop and validate a scaled autonomous vehicle using the AutoDRIVE ecosystem. We also describe a case-study of autonomous parking application using a modular probabilistic framework to illustrate the benefits of the proposed approach.Comment: Accepted at IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) 202
    corecore